GridClue™

Electricity Report Cards for the Fifty States

Agenda

- Critical Issues: Why GridClue Matters
- Evaluation Methodology
 - Resilience, Carbon Intensity, Reliability, and Cost
 - Evaluation of Top 10 and Bottom 10 States
- Case Studies
 - Washington
 - California
 - Texas
- Policy Scenarios
 - Wyoming as an Example of Modeling an Energy Transition
- Conclusions and Next Steps

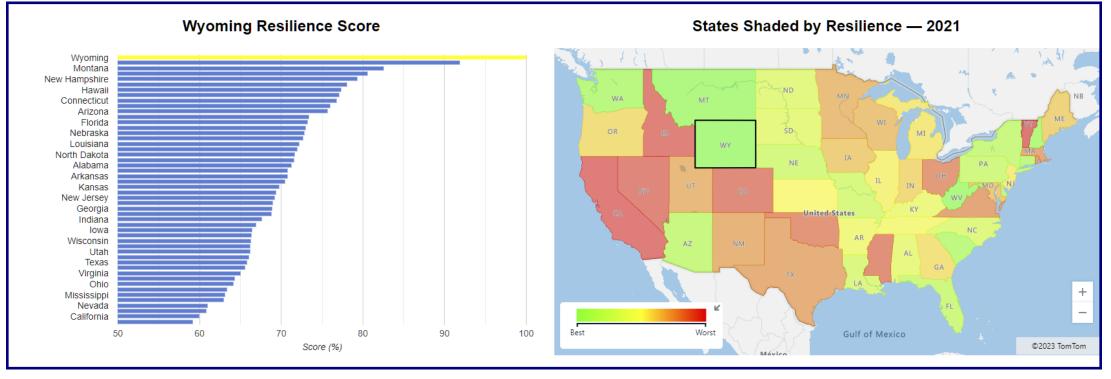
Critical Issues: Why GridClue Matters

U.S. electricity generation faces an acute, three-pronged challenge:

- Electricity demand is rapidly growing
- As aging fossil fuel fired plants retire, generation capacity is increasingly insufficient
- Environmental concerns because of carbon dioxide emissions
- GridClue users can evaluate a state's generation resources with these tools:
 - Electricity Report Card shows a state's ability to support current customers
 - Policy Scenario feature lets users adjust a state's options to enhance electricity generation
- □ Whom will GridClue help? Policymakers, analysts, and concerned citizens
- □ How can users benefit? Improved regulation of electricity generation
 - Gain critical insights
 - Make informed decisions
 - Identify priorities

Evaluation Methodology

- Data sources Public information from:
 - U.S. Energy Information Administration (EIA)
 - Environmental Protection Agency (EPA)
 - U.S. Department of Transportation (DOT)
 - Federal Energy Regulatory Commission (FERC)
 - U.S. Census Bureau
- Given State Report Card" is primary evaluation tool. Grades states on:
 - Resilience: Dispatchable plants with on-site energy to protect against long-term outages
 - Carbon Intensity: Based on carbon dioxide emissions of in-state generation plants
 - Reliability: Based on average duration of customer outages experienced
 - Cost: Based on average price/kilowatt-hour billed to consumers
- □ Standard model for academic grading (i.e., "A" through "F")

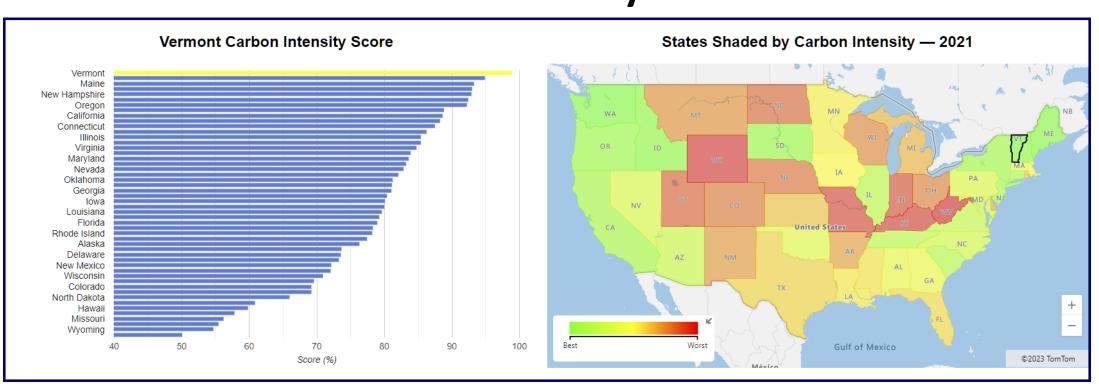

REPORT CARD GRADES

Resilience Grade

- Reflects a state's ability to promptly recover from a wide-area blackout
- Sufficient generation capacity to supply customer load of blacked-out areas
- Energy sources that are stored on-site and or redundant
- □ These generation resources are considered "resilient":
 - 1. Natural gas-fired plants that can switch to fuel oil backup (dual-fuel)
 - 2. Natural gas-fired plants connected to more than one pipeline
 - 3. Nuclear power plants
 - 4. Hydroelectric and pumped storage plants
 - 5. Geothermal plants
 - 6. Petroleum-fired plants
 - 7. Coal-fired plants

Ļ

Resilience Scores



- #1: Wyoming with resilience ratio of 4.42
- #50: Vermont with resilience ratio of 0.81

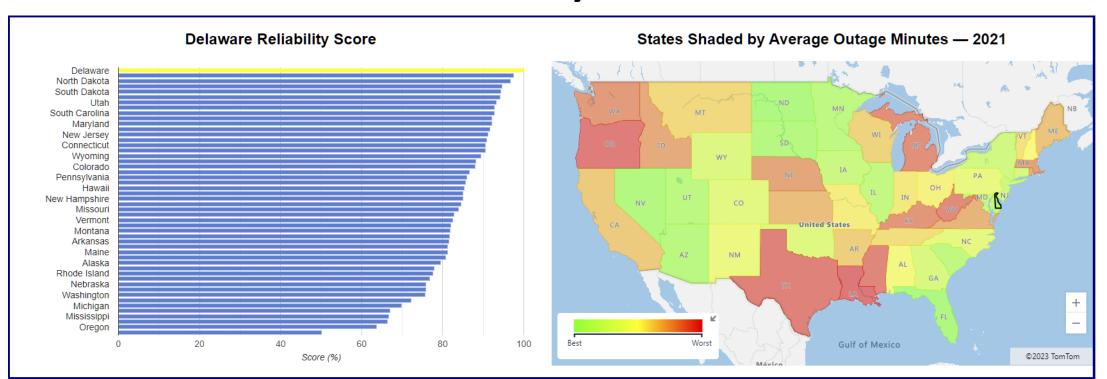
Carbon Intensity Grade

- Measures carbon/kilowatt-hour that in-state generation produces
 - A state earning a 100% generates all electricity without emissions
 - A state earning a 50% emits the most, compared to all other states
- Carbon emissions resulting from imported electricity are not included because of insufficient publicly-available data
- Top performers received high marks for two reasons:
 - They import substantial portions of their electricity
 - Generation almost solely based on renewables or carbon-neutral sources

Ļ

Carbon Intensity Scores

- #1: Vermont with a Carbon Intensity of 0.04 Lbs/kWh
- #50: West Virginia with a Carbon Intensity of 1.94 Lbs/kWh


Reliability Grade

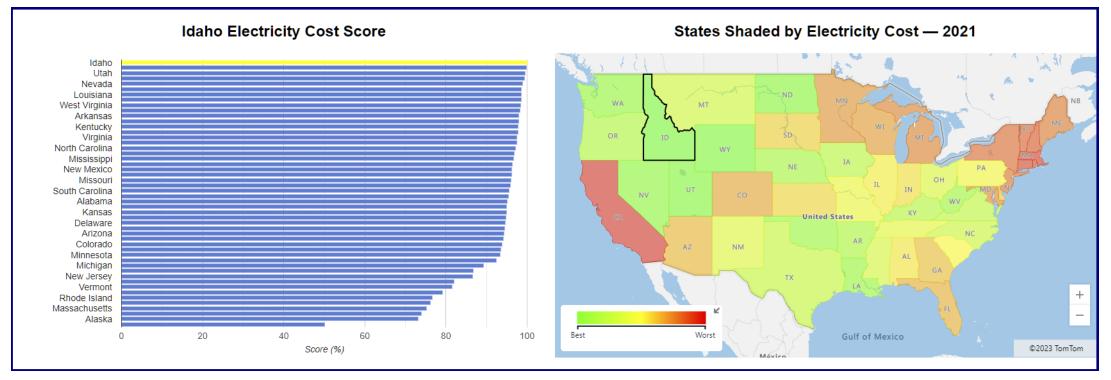
Uses the System Average Interruption Duration Index (SAIDI)

Measures average duration of customer outages in the state for that year

- A state earning a 100% has zero minutes of outages over the entire year
- A state earning a 50% has the highest cumulative duration of outages
- Metric includes Major Event Days (MEDs) such as hurricanes and ice storms
 - Areas with severe weather in a single year can be penalized under SAIDI

Ę

Reliability Scores


- #1: Delaware with a SAIDI of 64 minutes
- #50: Louisiana with a SAIDI of 4,811 minutes after Hurricane Ida

Cost Grade

- This metric uses the weighted average cost of electricity/kWh
- Average ratepayer cost is calculated using the weighted consumption for residential, commercial, and industrial sectors
- Many states have abundant natural resources (e.g., hydroelectric, coal, or natural gas), allowing inexpensive generation and, therefore, low electricity cost
- Electricity imported and then sold within a state is included in this calculation

Ļ

Cost Scores

- #1: Idaho with a price of 8.17 cents/kWh
- #50: Hawaii with a price of 30.35 cents/kWh—using expensive imported fuel

States With Excellent Grades

Top ten performers for 2021:

- □ All of top performing states achieved high grades for reliability and cost
- Aside from Wyoming, all of these states offset a mediocre grade for Resilience with a contrasting high grade for Carbon Intensity (low carbon dioxide emitted)

Sta	te Overall GPA 🔻	Overall Grade	Resilience	Low Carbon Intensity	Reliability	Low-Cost Electricity
1 South Dake	<u>ta</u> 3.3	5 B+	C-	A-	А	A
2 South Caro	<u>ina</u> 3.2	5 B	C+	В	A-	A
3 Arizona	3.2	5 B	С	В	А	A
4 Washingtor	3.1	5 B	C+	A	С	A+
5 <u>Florida</u>	3.1	5 B	С	C+	A+	A
6 Delaware	3.0	B B	С	С	A+	A
7 <u>Illinois</u>	3.0) B	D+	В	A-	A
8 North Carol	na 3.0) B	C-	В	В	A+
9 Wyoming	2.9	7 B-	A+	F	B+	A+
10 <u>Nevada</u>	2.9	2 B-	D-	B-	А	A+

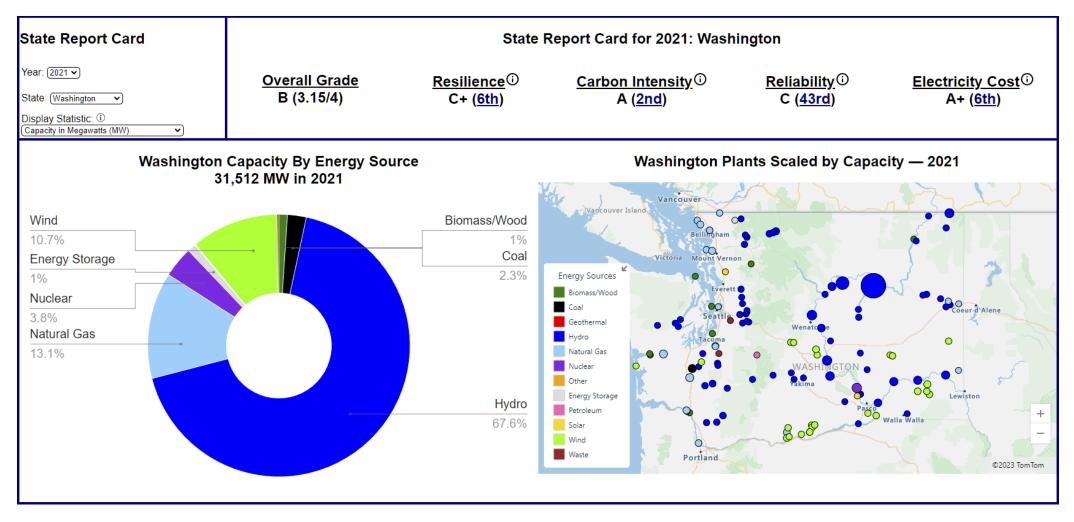
States Needing Improvement

- Ten states below earned the lowest overall grades for 2021
- □ Hawaii relies on imported fossil fuels and intermittent renewables
- Rhode Island has a small in-state generation fleet and relies on imports
- Kentucky has large coal-fired generators
- Massachusetts generators depend on expensive natural gas from pipelines

	State	Overall GPA 🔺	Overall Grade	Resilience	Low Carbon Intensity	Reliability	Low-Cost Electricity
1	<u>Hawaii</u>	1.32	D+	C+	F	В	F
2	Rhode Island	1.90	C-	D	C+	C+	С
3	Kentucky	1.92	C-	C-	F	C-	A+
4	Massachusetts	1.93	C-	D	B-	С	С
5	<u>Michigan</u>	1.97	C-	D+	С	D+	B+
6	California	2.00	С	F	B+	B-	С
7	Indiana	2.00	С	D+	F	B-	A
8	<u>Mississippi</u>	2.08	С	D	C+	D	A
9	Louisiana	2.08	С	C-	C+	F	A+
10	Texas	2.15	C	D	C+	D	A+

CASE STUDIES

Washington State: #1 in Class of Fifty States


- Ranks #6 in Resilience and #2 in Carbon Intensity
- □ Hydropower provides 21GW of capacity and 65% of generation
- Low-cost electricity results from availability of hydropower and inexpensive import of natural gas from Canada
- While ranking #43 in Reliability, Washington receives a "C" when compared to unreliable outlier states like Louisiana

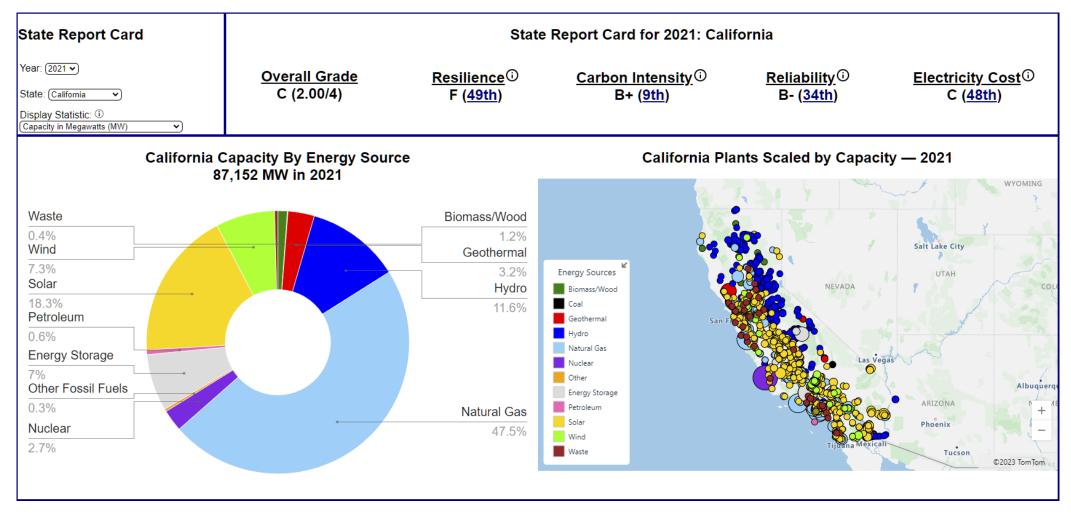
State Report Card for 2021: Washington

Overall Grade	<u>Resilience</u> ①	<u>Carbon Intensity</u>	<u>Reliability</u>	<u>Electricity Cost</u>
B (3.15/4)	C+ (<u>6th</u>)	A (<u>2nd</u>)	C (<u>43rd</u>)	A+ (<u>6th</u>)

Ę

Washington State (#1)

California: #48 in Class of Fifty States


- □ "F" in Resilience due to low dispatchable capacity
 - California imports 20% of its electricity
 - Only 28.3% of in-state capacity is resilient
- B+ in Carbon Intensity results from a large share of renewables (30.9% of energy supply) and no significant coal generation
- High electricity cost results from expensive natural gas, "bidding up" of in-state generation resources, and intermittent (and expensive) renewables

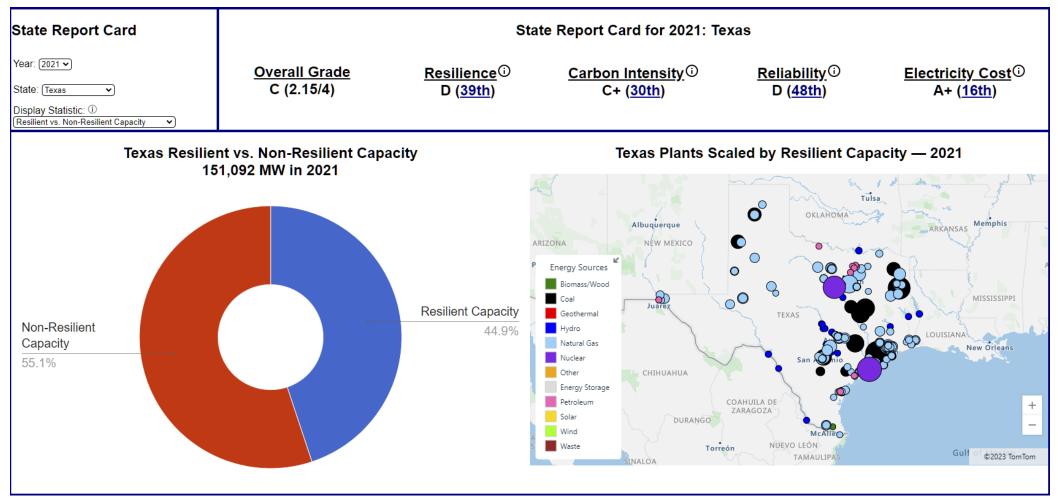
State Report Card for 2021: California

Overall Grade	<u>Resilience</u>	<u>Carbon Intensity</u>	<u>Reliability</u>	<u>Electricity Cost</u>
C (2.00/4)	F (<u>49th</u>)	B+ (<u>9th</u>)	B- (<u>34th</u>)	C (<u>48th</u>)

Ę

California (#48)

Texas: #35 in Class of Fifty States


- □ "D" in Resilience due to a lack of resilient natural gas for generation
 - 47% of natural gas is unresilient, lacking either pipeline redundancy or a secondary fuel backup
- Moderate Carbon Intensity with coal and natural gas supplying 66.9% of electricity generation
- □ #48 in Reliability because of Winter Storm Uri and ensuing blackouts
- Low electricity cost results from the ERCOT market structure, but at the expense of Resilience and Reliability

State Report Card for 2021: Texas

Overall Grade	<u>Resilience</u>	Carbon Intensity ^①	<u>Reliability</u>	<u>Electricity Cost</u>
C (2.15/4)	D (<u>39th</u>)	C+ (<u>30th</u>)	D (<u>48th</u>)	A+ (<u>16th</u>)

Ę

Texas (#35)

POLICY SCENARIOS

Policy Scenario Feature

A data-driven, analytical tool built on the foundation of the Electricity Report Card

Users can determine how a state might generate cleaner, more reliable energy by:

- Adding, reducing, or deleting elements of a state's energy generating capacity
- Change in any resource will affect the Carbon Intensity score
- □ Changes in resilient energy sources will affect the Resilience score

Policy Scenario: Capacity Changes

The Capacity Scenarios page includes controls to change the capacity of each electricity resource in a state

- Currently listed capacities provide context on what can be adjusted and what can be reasonably added
- The "Change MW" fields can either be typed or adjusted using arrows within the text box
- When logged into GridClue, users have the option to load and save scenarios for future use
- Overnight Cost is calculated using the EIA and IPCC cost estimates for construction per megawatt

WY Green Transiti	ion 🖌 Lo	ad Scenari	0	
	Current MW	Change MW		Final MW
Biomass:	0	0	=	0
Coal:	7,539	-4000	=	3,539
Geothermal:	0	0	=	0
Hydro:	303	0	=	303
Natural Gas:	832	0	=	832
Nuclear:	0	2000	=	2,000
Storage:	0	0	=	0
Petroleum:	6	0	=	6
Solar:	92	0	=	92
Wind:	3,112	0	=	3,112
Waste:	0	0	=	0
	Update	Clear Ch	ange	s
Overnig Save Scenario	i	\$8.6 Bill	ion	

Policy Scenario Use Case: Wyoming

- U Wyoming scores high for Resilience and low for Carbon Intensity
- Some coal generation might be retired to transition to cleaner energy sources
- □ Using the previous slide's selection of -4 GW of coal and +2 GW of nuclear:
 - Resilience drops 1 rank and from an "A+" to an "A"
 - Carbon Intensity increases 17 places from an "F" to a "C+"
 - Construction of a 2-GW nuclear plant is estimated to cost \$8.6B
 - Wyoming's overall grade changes from #6 to #2

Electricity Report Card for 2021: Wyoming							
<u>Overall Grade (GPA)</u>	<u>Resilience</u> ⊡	<u>Carbon Intensity</u> ்	<u>Reliability</u>	<u>Electricity Cost</u>			
B- (2.98/4)	A+ (1st)	F (49th)	B+ (17th)	A+ (2nd)			
Modified Electricity Report Card for 2021: Wyoming							
<u>Overall Grade (GPA)</u>	<u>Resilience</u>	<u>Carbon Intensity</u>	<u>Reliability</u>	<u>Electricity Cost</u>			
B+ (3.48/4)	A (2nd)	C+ (32nd)	B+ (17th)	A+ (2nd)			

CONCLUDING ISSUES AND NEXT STEPS

Questions To Be Addressed in Grading Policies

Resilience: How can we reward states with a diverse set of generators over states that rely on a single energy source (e.g., coal or hydro)?

- Carbon Intensity: How can we better score states that rely largely on imports generated with an unknown carbon intensity?
- Reliability: Should this grade reflect natural disasters and other major events? Or should Major Event Days (MED) be eliminated from the scores?

Cost: Can cost-of-living be included in score calculations? If so, can this also be done for the commercial and industrial sectors?

Caveats to Grading Scheme for Electricity Report Cards

- Reliability grading curve can be "broken" some years by a handful of high outage states experiencing hurricanes, ice storms, or other extreme weather
- Wyoming and West Virginia affect Resilience grades of other 48 states by their extensive use of coal-fired plants with fuel stored on-site
- Grades for Cost are similarly affected by outlier Hawaii which must import fuel, resulting in twice the cost per kilowatt-hour of the national average
- □ Resilience and Carbon Intensity grades are usually a trade-off
 - Coal-fired plants are resilient but carbon-emitting
 - Nuclear, hydroelectric, and geothermal plants are both clean and resilient
 - Solar and wind generation contribute to lowering Carbon Intensity with no effect on Resilience due to their intermittent nature

How GridClue Can Contribute to Policymaking

- Prompt informed discussions by policy makers, analysts, and concerned citizens
- □ Enable users to examine each state's performance:
 - Current generation fleet and its resilience to extreme weather, disasters, and attacks—"Resilience"
 - Ability to provide clean and affordable electricity—"Carbon Intensity" and "Cost"
 - Experience in promptly restoring grid outages—"Reliability"
- **G** Formulate policies that balance:
 - Low-cost electricity
 - Protecting the environment
 - Meeting electricity demands ... current and projected ... from the norm to the extreme